
Middle East Technical University

Department of Electrical and Electronics
Engineering

EE300 Summer Practice I
Report

Student Name:
Halil Temurtaş
Student ID:
2094522
SP Beginning
Date:
03.07.2017
SP End Date:
28.07.2017

SP Company Name:
TÜRKSAT A.Ş.

SP Company Division:
Directorate of Satellite Programming

Supervisor Engineer:
Ömer Eren Can Koçulu

SE Contact Info:
ekoculu@turksat.com.tr

.. .. 2017

Contents

1 Introduction 3

2 Description of the Company 4
2.1 Company Name . 4
2.2 Company Location . 4
2.3 General Description of the Company 4
2.4 The Organizational Chart of the Company 5
2.5 A Brief History of the Company 6

3 Orientation & Useful Programs 7
3.1 Pomodoro Technique . 7

3.1.1 Pomotodo App . 8
3.2 Database Structure . 10

3.2.1 Airtable . 10
3.3 Wiki Pages . 11

3.3.1 Confluence Wiki . 12
3.4 V-Model & Agile Methodology 12

3.4.1 V-Model . 12
3.4.2 Agile Methodology . 14

3.4.2.1 Roles . 14
3.5 Version Control with Git . 14

3.5.1 Github . 15
3.5.2 Bitbucket . 15

4 Solar Tracker System Project 15
4.1 Planning & Researching . 15

4.1.1 System Requirements 16
4.1.2 Subsystem Requirements 16
4.1.3 Component Requirements 17
4.1.4 Components . 17

4.2 Training . 18
4.2.1 Training on Python . 18

4.2.1.1 Basics . 19
4.2.1.2 Using Conditions 20
4.2.1.3 Using Loops 20
4.2.1.4 Defining Functions 21

1

4.2.1.5 Defining Classes 21
4.2.2 Training on Raspberry Pi 22

4.2.2.1 Training on LEDs 22
4.2.2.2 Training on LDRs 22
4.2.2.3 Training on Servo Motors with Raspberry Pi 23

4.2.3 Training on Arduino 23
4.2.3.1 Training on Servo Motors with Arduino . . . 23

4.3 Project Coding . 24
4.3.1 Raspberry Pi Part . 24
4.3.2 Arduino Part . 26

4.4 Implementation . 28
4.4.1 PCB Drawing & 3D Drawings 28

4.4.1.1 PCB Drawing 28
4.4.1.2 3D Drawings 28

4.4.2 Construction of the Body 28
4.4.2.1 Top Layer . 28
4.4.2.2 Main Body 29
4.4.2.3 Solar Panel 29
4.4.2.4 Final Body 30

4.5 Tests . 30
4.5.1 System Requirement Tests 30
4.5.2 Subsystem Requirement Tests 31
4.5.3 Component Requirement Tests 31

5 After Project 31
5.1 Training on MATLAB . 31

5.1.1 Coursera . 31
5.1.2 Outline of the Course 32

5.1.2.1 Simple Sorting Code 33
5.2 Training on Microsoft Sharepoint 35

5.2.1 Microsoft Sharepoint 35

6 Conclusion 35

7 References 35

2

1 Introduction

I have performed my summer practice in TÜRKSAT A.Ş. (Türksat Satel-
lite Communications and Cable TV Operations Company - Türksat Uydu
Haberleşme Kablo TV ve İşletme A.Ş). It is the sole communications satel-
lite operator in Turkey. My internship lasted 20 days. Ömer Eren Koçulu,
a mechatronics engineer in TURKSAT was our supervisor and he managed
our internship program.

My internship started with an orientation program. The company and
how works are handled were presentesd to new interns. After that, the pro-
grams and tecniques we would use in our internship and our work life were
introduced. Following this introduction, a project is assigned to us as a
team. Our team consisted of me and two mechatronics engineering students,
Abdullah Taha İzmir and Duran Arif Göçer.

The project was about solar panels that can follow sun to increase its
efficiency. In order to achieve this, we were recommended to use Raspberry
Pi instead of Arduino since other team were using Arduino in their project.
Moreover, we could compare the efficiency of using Raspberry and Arduino
at the end. For controlling Raspberry Pi, I learnt the basics of Python and
Linux enviroment. Lastly, I studied on Matlab, MS Sharepoint after finishing
project.

In this report, I start with an introduction
...
...
...
...
...
...
...
...
...
...
...
...

3

2 Description of the Company

In this chapter, I will introduce the company in four parts:

1. Company Name

2. Company Location

3. General Description of the Company

4. A Brief History of the Company

2.1 Company Name

TÜRKSAT A.Ş. (Türksat Satellite Communications and Cable TV Op-
erations Company - Türksat Uydu Haberleşme Kablo TV ve İşletme A.Ş).

2.2 Company Location

Address-1: Ana Kampüs: Konya Yolu 40 KM. Gölbaşı/Ankara/Türkiye

Address-2: Gazi Teknokent: Bahçelievler Mahallesi, Gazi Ünv. Gölbaşı
Yerleşkesi No:24, 06830 Gölbaşı/Ankara/Türkiye

Phone: +90 312 615 3000

Fax: +90 312 499 5115

2.3 General Description of the Company

Türksat Satellite Communications and Cable TV Operations Company is
the sole communications satellite operator in Turkey. It was established on 21
December 1990 as a state-owned company named Türksat Milli Haberleşme
Uyduları (Türksat National Communications Satellites) in Gölbaşı, Ankara
Province; eventually incorporating the satellite services of Türk Telekomünikasyon
A.Ş. and becoming Türksat A.Ş. on 22 July 2004. Türksat A.Ş. also owns
100% of the shares of Eurasiasat S.A.M., jointly established as a spin-off
company with Aérospatiale in 1996 to manufacture and launch Turksat 2A
(Eurasiasat 1) in 2001.

4

2.4 The Organizational Chart of the Company

The organizational chart of TÜRKSAT can be seen in Figure 1.

Figure 1: The Organizational Chart of TÜRKSAT

5

2.5 A Brief History of the Company

• 1968

The Chief Engineering of Satellite Telecommunications Group was
established within the General Directorate of PTT.

• August 11th, 1994

Turkey’s Türksat 1B satellite was launched and put successfully
into 42◦ East orbit.

• July 10th, 1996

Turkey’s second satellite, Türksat 1C, was launched and put into
31.3◦ E orbit.

• January 11th, 2001

Türksat 2A (Eurasiasat 1) satellite manufactured by Eurasiasat
company established in partnership with Türk Telekom and Alcatel
company launched by Ariane 4 rocket from Kourou Base in South
America.

• July 22nd, 2004

In order to conduct satellite communication services, which was
previously conducted by Türk Telekomünikasyon A.Ş., under a new
company, Türksat A.Ş. was founded by Law no. 5189.

• June 13th, 2008

Türksat 3A satellite launched from the French Guiana on June
13th, 2008 at 01:05 by Ariane 5 rocket and put into 42.0◦ East orbit.

• February 14th, 2014

Turksat 4A communication satellite launched by Proton rocket
from Baikonur Cosmodrome in Kazakhstan.

• October 16th, 2015

Turksat 4B communication satellite launched by Proton Breeze M
vehicle from Baikonur Cosmodrome in Kazakhstan and put into 50◦

East orbit.

6

3 Orientation & Useful Programs

Throughout my summer practice, I used several techniques and useful
programs recommended by our supervisor.

In this section, I will explain these techniques and programs that I found
very useful.

3.1 Pomodoro Technique

The Pomodoro Technique is a time management method developed by
Francesco Cirillo in the late 1980s. The technique aims to increase efficiency
by breaking work hours into several intervals called pomodoro. Originally 25
minutes in length, separated by short breaks, the lenght of this intervals can
be changed people’s personalities. For example, I have used 40 minutes lenght
pomodoros, 5 minutes length short breakes and 1 hour lenght long break
after 4 or 5 pomodoros. Pomodoros (tomatos in Italian) are named after the
tomato-shaped kitchen timer that Cirillo used as a university student.

The tecnique is closely related to software design concepts such as incre-
mental development and iterative and timeboxing, and has been adopted in
pair programming contexts.

There are six steps in the technique:

1. Decide on the task to be done.

2. Set the pomodoro timer (traditionally to 25 minutes).

3. Work on the task until the timer rings.

4. After the timer rings put a checkmark on a piece of paper.

5. If you have fewer than four checkmarks, take a short break (3–5 min-
utes), then go to step 2.

6. After four pomodoros, take a longer break (15–30 minutes), reset your
checkmark count to zero, then go to step 1.

A goal of the technique is to reduce the impact of internal and external
interruptions on focus and flow. A pomodoro is indivisible which means it can
not be interrupted. When interrupted during a pomodoro, either the other
activity must be recorded and postponed (inform – negotiate – schedule –
call back) or the pomodoro must be abandoned.

7

3.1.1 Pomotodo App

Although the creator of this technique encourages a low-tech approach
that includes using a mechanical timer, paper and pencil. We have used more
technological solutions called Pomotodo App in my summer practice.

The reason behind this decision was to increase efficiency even mre by us-
ing Pomotodo’s some key features like built-in to-do list & category tracking
system.

The stages of planning, tracking, recording, processing and visualizing are
fundamental to the technique. In the planning phase tasks are prioritized by
recording them in a ”To Do Today” list. This enables users to estimate the
effort tasks require. As pomodoros are completed, they are recorded, adding
to a sense of accomplishment and providing raw data for self-observation and
improvement. For that purpose, I have used Pomotodo’s builtin to-do list
that enables user not just tracking its work but allows user to categorise work
by some cathegories. Some of my to-do list objects can be seen in figure XX.

Figure 2: My To Do List in Pomotodo Web App

8

Figure 3: My Pomodoro History of July 12th

As can be seen in figure XX, I have used some hashtags to categorise
the work I have done. As can be understood from figure, 10 pomodoros
were completed at July 12th. As I mentioned earlier, I have tried to use my
pomodoro lenght as a 40 minutes and short breaks as 5 minutes. After 5
completed pomodoros, a long break was taken. After using this hashtags, we
can ingestive our work statistic for desired times. For instance, throughout
my summer practice 66% of my time was spent on training. Further statics
can be seen at figure XX.

Figure 4: Some statics about my summer practice

9

3.2 Database Structure

A database is an organized collection of data. It is the collection of
schemas, tables, queries, reports, views, and other objects. The data are
typically organized to model aspects of reality in a way that supports pro-
cesses requiring information, such as modelling the availability of rooms in
hotels in a way that supports finding a hotel with vacancies.

Formally, a ”database” refers to a set of related data and the way it is
organized. Access to this data is usually provided by a ”database manage-
ment system” (DBMS) consisting of an integrated set of computer software
that allows users to interact with one or more databases and provides access
to all of the data contained in the database (although restrictions may exist
that limit access to particular data). The DBMS provides various functions
that allow entry, storage and retrieval of large quantities of information and
provides ways to manage how that information is organized. Because of the
close relationship between them, the term ”database” is often used casually
to refer to both a database and the DBMS used to manipulate it. Outside
the world of professional information technology, the term database is often
used to refer to any collection of related data (such as a spreadsheet or a
card index). This article is concerned only with databases where the size
and usage requirements necessitate use of a database management system.

3.2.1 Airtable

Airtable is a spreadsheet-database hybrid i.e., the features of a database are
applied to a spreadsheet. The fields in an Airtable table are similar to a
cell of a spreadsheet, but have types check-boxes, phone numbers, and drop-
down lists, and can reference file attachments like images. Users can create
a database, set up field types, add records, link tables, collaborate with a
team, sort the records based on a field and publish views to external websites.
When an Airtable database is created, it is automatically hosted to the cloud.
The values in the fields are updated real time.

Airtable has six basic components:
Bases: All the information needed to create a project is contained in a

Base. Bases can be built from existing templates provided by Airtable. In
addition, they can also be built from scratch, from a spreadsheet or from an
existing Base.

Tables: A table is similar to an excel spreadsheet. A Base is a collection

10

of tables.
An example table in a restaurant Base.
Views: Views are how we can see a table. Views can be saved for future

purposes.
Fields: Each entry in a Table is a field. They are not just restricted to

hold text. Airtable currently offers 16 basic field types. These are: single-
line texts, long text articles, file attachments, check-boxes, single select from
drop-down list, multiple-selects from drop-down lists, date and time, phone
numbers, email ids, URLs, numbers, currency, percentage, auto-number, for-
mulae and barcodes.

Records: Each row of a Table is a Record.
Team: Team is a collection of Bases in Airtable. For example, in the

adjacent restaurant template which contains all the information we need to
store about the restaurants. We can have a ‘Restaurants’ table to store the
names of restaurants along with information about their addresses, ratings,
menus, etc. We can have a view to show our favourite restaurants. Each
record in the Restaurants table is kept for a particular restaurant. ‘Rating’
can be kept as a field, to help generate ‘My favourite restaurants’ view.

3.3 Wiki Pages

A wiki is a website on which users collaboratively modify content and struc-
ture directly from the web browser. In a typical wiki, text is written using
a simplified markup language and often edited with the help of a rich-text
editor.

A wiki is run using wiki software, otherwise known as a wiki engine. A
wiki engine is a type of content management system, but it differs from most
other such systems, including blog software, in that the content is created
without any defined owner or leader, and wikis have little implicit structure,
allowing structure to emerge according to the needs of the users.

There are dozens of different wiki engines in use, both standalone and
part of other software, such as bug tracking systems. Some wiki engines
are open source, whereas others are proprietary. Some permit control over
different functions (levels of access); for example, editing rights may permit
changing, adding or removing material. Others may permit access without
enforcing access control. Other rules may be imposed to organize content.

11

3.3.1 Confluence Wiki

Figure 5: Body

There are dozens of different wiki engines in use, both standalone and part
of other software, such as bug tracking systems. Some wiki engines are open
source, whereas others are proprietary. Some permit control over different
functions (levels of access); for example, editing rights may permit changing,
adding or removing material. Others may permit access without enforcing
access control. Other rules may be imposed to organize content.

3.4 V-Model & Agile Methodology

3.4.1 V-Model

The V-model is a graphical representation of a systems development lifecycle.
It is used to produce rigorous development lifecycle models and project man-

12

agement models. The V-model falls into three broad categories, the German
Das V-Modell, a general testing model and the US government standard. The
V-model summarizes the main steps to be taken in conjunction with the cor-
responding deliverables within computerized system validation framework,
or project life cycle development. It describes the activities to be performed
and the results that have to be produced during product development.

Figure 6: V-Model

The left side of the ”V” represents the decomposition of requirements,
and creation of system specifications. The right side of the V represents in-
tegration of parts and their validation. However, Requirements need to be
validated first against the higher level requirements or user needs. Further-
more, there is also something as validation of system models (e.g. FEM).
This can partially be done at the left side also. To claim that validation
only occurs at the right side may not be correct. The easiest way is to say
that verification is always against the requirements (technical terms) and
validation always against the real world or the user needs

13

3.4.2 Agile Methodology

Agile software development describes a set of values and principles for soft-
ware development under which requirements and solutions evolve through
the collaborative effort of self-organizing cross-functional teams. It advocates
adaptive planning, evolutionary development, early delivery, and continuous
improvement, and it encourages rapid and flexible response to change. The
term agile (sometimes written Agile) was popularized by the Agile Mani-
festo, which defines those values and principles. Agile software development
frameworks continue to evolve, two of the most widely used being Scrum and
Kanban.

3.4.2.1 Roles

Product Owner : The team leader, the person responsible for tracking the
process.
Scrum Master : The person responsible for the correct execution of the
process.
Hardware Engineer : The person or people that are responsible for de-
signing and implementing the electrical and electronics hardware.
Software Engineer : The person or people that are responsible
Structure Engineer : The person or people that are responsible
Test Engineer : The person or people that are responsible

3.5 Version Control with Git

Git is a version control system (VCS) for tracking changes in computer
files and coordinating work on those files among multiple people. It is pri-
marily used for source code management in software development, but it
can be used to keep track of changes in any set of files. As a distributed
revision control system it is aimed at speed, data integrity, and support for
distributed, non-linear workflows. Git was created by Linus Torvalds in 2005
for development of the Linux kernel, with other kernel developers contribut-
ing to its initial development. Its current maintainer since 2005 is Junio
Hamano. As with most other distributed version control systems, and unlike
most client–server systems, every Git directory on every computer is a full-
fledged repository with complete history and full version tracking abilities,
independent of network access or a central server. Like the Linux kernel,

14

Git is free software distributed under the terms of the GNU General Public
License version 2.

3.5.1 Github

3.5.2 Bitbucket

Bitbucket is a web-based hosting service that is owned by Atlassian, used for
source code and development projects that use either Mercurial (since launch)
or Git (since October 2011) revision control systems. Bitbucket offers both
commercial plans and free accounts. It offers free accounts with an unlimited
number of private repositories (which can have up to five users in the case
of free accounts) as of September 2010. Bitbucket integrates with other
Atlassian software like Jira, HipChat, Confluence and Bamboo. It is similar
to GitHub, which primarily uses Git. Bitbucket has traditionally tailored
itself towards helping professional developers with private proprietary code,
especially since being acquired by Atlassian in 2010. In September 2016,
Bitbucket announced it had reached 5 million developers and 900,000 teams
on its platform. Bitbucket has 3 deployment models: Cloud, Bitbucket Server
and Data Center.

sdfdfsfdsf

4 Solar Tracker System Project

In my summer practice, I was assigned for a project with a team. For
the project, we were expected to built a solar panel system that can follow
the sun light to maxinize its efficiency.

4.1 Planning & Researching

As planning the project, we used V-model and Agile Methodology (Scrum)
in order to increase efficiency and reduce time spent on the project. As men-
tioned earlier, using V-model required using another program. Therefore, we
decided to use Airtable for tracking system requirements, subsystem require-
ments, tests and so on. The Interface of Airtable & System Requirements
can be seen at figure X.

15

4.1.1 System Requirements

Figure 7: The Interface of Airtable & System Requirements

Constructing V-model required to specify the requirements that defines
the project. For the system requirements, we considered the most basic
requirements that the project must fulfil. For instance, being portable was
a primary purpose for our project and it became one system requirements.
From the nature of V-model, every system requirement has one or more
subsystem requirement and system requirement test that will be explained
later. Our project had 11 system requirements as can be seen at Figure 7.

4.1.2 Subsystem Requirements

As mentioned just above, every system requirement has one or more
subsystem requirement that detail the requirement. As the V-model suggests,
for fulfilling the system requirements, its subsystem requirements must be
fulfilled first. These subsystem requirements can be considered as secondary
goals that the project trying to accomplish in order to succeed its primary
goals. As can be seen at Figure 8, we had 14 subsystem requirements for
finalizing the project.

16

Figure 8: Body

4.1.3 Component Requirements

Figure 9

Figure 9: Body

4.1.4 Components

Table 1

17

Number of used Unit Price (TL/unit) Cost(TL)
Servo Motor 2 53.74 107.48

Microcontroller 1 158.9 158.90
Additional microcontroller 1 50.00 50.00

Solar Panel 2 23.18 46.36
LDR 4 1.26 5.04

Jumper 80 0.12 9.60
Somun 10 0.01 0.14

USB Voltage Regulator 1 7.21 7.21
Pil yuvası 1 1.60 1.60

Vida 20 0.07 1.34
Standoff 16 0.19 3.04

Makaron (1 meter) 1 1.26 1.26
Dış malzeme 2 15.00 30.00

TOTAL 421.97

Table 1: The components used in the project.

4.2 Training

Table 2

Roles Responsible Person
1 Product Owner Halil Temurtaş
2 Scrum Master Eren Koçulu

3 Hardware Engineer Taha İzmir & Halil Temurtaş
4 Software Engineer Arif Göçer & Halil Temurtaş

5 Structure Engineer Taha İzmir & Arif Göçer
6 Test Engineer Arif Göçer & Halil Temurtaş

Table 2: Roles

4.2.1 Training on Python

In order to use Raspberry Pi efficiently, I studied Python for a while from
a couple of web sites. I mainly focused on Python 3 since it’s more up to
date than previous version. I tried different codes on Pycharm for Windows

18

before meeting with Linux terminal and Raspberry. Pycharm is one of the
most recommended Python IDE’s by communities. Here are some of my very
first attempts to use Python.

4.2.1.1 Basics

1 # Using Python fort he first time!!

2 print("Hello Intership !!!")

3

4 x = 1

5 if x == 1:

6 # indented four spaces , indents works as brackets in C!

7 print("x is 1.")

8 if x==3:

9 print(23)

10

11 myint = 7

12 print(myint) # use ’#’ for commenting

13

14 # A sample script that uses lists:

15

16 numbers=[] # creates a list called numbers.

17 numbers.append(1) # adds ’1’ to numbers as first element.

18 numbers.append(2)

19 numbers.append(3)

20

21 strings=[] # creates a list called strings.

22 strings.append("hello")

23 strings.append("world")

24

25 names = ["Ali", "Ahmet", "Ayse"] # adds Ali , Ahmet and Ayse

to names.

26

27 second_name=names[1]

28

29 print(numbers) # prints [1, 2, 3]

30 print(strings) # prints [’hello ’, ’world ’]

31 print("The 2nd name on the name list is %s" %second_name)

prints the second name

on the names list is Ahmet!

19

1 astring = "Hello world!"

2

3 print(astring.index("o")) # prints 4, since o appears firstly

at 4th digit.

4 print(astring.count("l")) # prints 3, since l appears three

times

5 print(astring[3:7]) # prints lo w, starting from 3rd

element to 7th element (7th is

not included !)

6 print(astring[3:7:2]) # prints l, starting from 3rd element

to 7th element skipping one

character.

7 print(astring[::-1]) # prints the string reverse.

8 print(astring.upper ()) # prints the string with upper cases.

9 print(astring.lower ()) # prints the string with lower cases.

10 print(astring.startswith("Hello")) # Returns True

11 print(astring.endswith("asdfasdfasdf")) # Returns False

4.2.1.2 Using Conditions

1 if < statement is="" true="" > :

2 < do something="" >

3

4

5 elif < another statement="" is="" true="" > :

6 < do something="" >

7

8

9 else:

10 < do something="" >

11

12

4.2.1.3 Using Loops

1 temurtas = [5, 8, 3, 6]

2 for halil in temurtas:

3 print(halil) # prints every element in temurtas one by

one in every loop.

4 print(temurtas) # prints [5, 8, 3, 6]

20

1 count=0

2 while (count<5) :

3 print(count)

4 count +=1

5 else:

6 print("count value reached %d" %(count))

4.2.1.4 Defining Functions

1 def sum_two_numbers(a, b): # Defining function

2 return a + b

3 x = sum_two_numbers(1,2) # after this line x will hold the

value 3!

4 print("x=%s" %x) #prints x=3

4.2.1.5 Defining Classes

1 class Vehicle: # define the Vehicle class

2 name = ""

3 kind = "car"

4 color = ""

5 value = 100.00

6

7 def description(self):

8 desc_str = "%s is a %s %s worth $%.2f." %(self.name ,

self.color , self.kind ,

self.value)

9 return desc_str

10

11 car1 = Vehicle ()

12 car1.name = "Ferrari"

13 car1.color = "red"

14 car1.kind = "sport"

15 car1.value = 600000.00

16

17 car2 = Vehicle ()

18 car2.name = "Jeep"

19 car2.color = "blue"

20 car2.kind = "SUV"

21 car2.value = 10000.00

22

23 print(car1.description ()) # prints Ferrari is a red sport

worth $600000.00.

21

24 print(car2.description ()) # prints Jeep is a blue SUV worth

$10000.00.

As I went into detail, Python is not very difficult language to learn. In
fact, aside from some indent mistake using it is very simple and clean yet
powerfull in various applications.

4.2.2 Training on Raspberry Pi

1 x==4 # first line of code on raspberry pi

2 if x==4

3 print("evet")

4.2.2.1 Training on LEDs

1 import RPi.GPIO as GPIO

2 import time

3

4 GPIO.setmode(GPIO.BCM)

5 GPIO.setwarnings(False)

6 GPIO.setup(17 ,GPIO.OUT)

7 GPIO.setup(4,GPIO.OUT)

8

9 while True:

10 print "LED on"

11 GPIO.output(17 ,GPIO.HIGH)

12 GPIO.output(4,GPIO.LOW)

13 time.sleep(1)

14 print "LED off"

15 GPIO.output(17 ,GPIO.LOW)

16 GPIO.output(4,GPIO.HIGH)

17 time.sleep(1)

4.2.2.2 Training on LDRs

1 from gpiozero import LightSensor , Buzzer

2

3 ldr = LightSensor(4)

4 ldr2 = LightSensor(17)

5 ldr3 = LightSensor(27)

6 ldr4 = LightSensor(22)

7

22

8 bir=ldr.value+ldr2.value

9 iki=ldr3.value+ldr4.value

10 uc=ldr.value+ldr3.value

11 dort=ldr2.value+ldr4.value

12

13 while True:

14 print("ldr= %s" %ldr.value)

15 print("ldr2= %s" %ldr2.value)

16 print("ldr3= %s" %ldr3.value)

17 print("ldr4= %s" %ldr4.value)

18 print("bir= %s" %bir)

19 print("iki= %s" %iki)

20 print("uc= %s" %uc)

21 print("dort= %s" %dort)

4.2.2.3 Training on Servo Motors with Raspberry Pi

1 # Servo Control

2 import time

3 import wiringpi

4

5 wiringpi.wiringPiSetupGpio () # use ’GPIO naming

6 wiringpi.pinMode(18, wiringpi.GPIO.PWM_OUTPUT) # set pin 18

to be a PWM output

7 wiringpi.pwmSetMode(wiringpi.GPIO.PWM_MODE_MS) # set the PWM

mode to milliseconds stype

8 wiringpi.pwmSetClock(192) # divide down clock

9 wiringpi.pwmSetRange(2000)

10

11 delay_period = 0.01

12

13 while True:

14 for pulse in range(50 , 250 , 1):

15 wiringpi.pwmWrite(18, pulse)

16 time.sleep(delay_period)

17 for pulse in range(250 , 50 , -1):

18 wiringpi.pwmWrite(18, pulse)

19 time.sleep(delay_period)

4.2.3 Training on Arduino

4.2.3.1 Training on Servo Motors with Arduino

23

1 #inc lude <Servo . h>
2

3 Servo Servo1 ; // c r e a t e se rvo named Servo1 to con t r o l a se rvo
4 i n t pos = 0 ; // va r i ab l e to s t o r e the servo po s i t i o n }
5

6 void setup ()
7 {
8 Servo1 . attach (9) ; // a t tache s the servo on pin 9 to the servo

ob j e c t
9 }

10

11 void loop ()
12 {
13 f o r (pos = 0 ; pos <= 180 ; pos += 1) // goes from 0 degree s

to 180 degree s in s t ep s o f 1 degree
14 {
15 Servo1 . wr i t e (pos) ; // t e l l s e rvo to go to po s i t i o n in

va r i ab l e ’ pos ’
16 delay (15) ; // waits 15ms f o r the servo to reach the

po s i t i o n
17 }
18 f o r (pos = 180 ; pos >= 0 ; pos −= 1) // goes from 180 degree s

to 0 degree s
19 {
20 Servo1 . wr i t e (pos) ; // t e l l s e rvo to go to po s i t i o n in

va r i ab l e ’ pos ’
21 delay (15) ; // waits 15ms f o r the servo to reach the

po s i t i o n
22 }
23 }

4.3 Project Coding

4.3.1 Raspberry Pi Part

1 from gpiozero import LightSensor , Buzzer

2

3 import RPi.GPIO as GPIO

4 import time

5

6 GPIO.setmode(GPIO.BCM)

7 GPIO.setwarnings(False)

8 GPIO.setup(23 ,GPIO.OUT)

9 GPIO.setup(24 ,GPIO.OUT)

10 GPIO.setup(25 ,GPIO.OUT)

24

11 GPIO.setup(8,GPIO.OUT)

12

13 ldr = LightSensor(4)# Assign the data coming from LDR1 to ldr

14 ldr2 = LightSensor(17) # Assigns the data similarly

15 ldr3 = LightSensor(27)

16 ldr4 = LightSensor(22)

17

18 while True:

19 bir=ldr.value+ldr2.value # Total Readings of Top

20 iki=ldr3.value+ldr4.value # Total Readings of Bottom

21 uc=ldr.value+ldr3.value # Total Readings of Left

22 dort=ldr2.value+ldr4.value # Total Readings of Right

23

24 fark1=bir-iki; #

25 fark2=iki-bir;

26 fark3=uc-dort;

27 fark4=dort-uc;

28

29 print("bir= %s" %bir)

30 print("iki= %s" %iki)

31 print("uc= %s" %uc)

32 print("dort= %s" %dort)

33

34 print("fark1= %s" %fark1)

35 print("fark3= %s" %fark3)

36

37 if bir>iki and fark1>0.01:

38 GPIO.output(23 ,GPIO.HIGH)

39 GPIO.output(25 ,GPIO.LOW)

40 time.sleep(1)

41 elif iki>bir and fark2>0.01:

42 GPIO.output(25 ,GPIO.HIGH)

43 GPIO.output(23 ,GPIO.LOW)

44 time.sleep(1)

45 else :

46 GPIO.output(25 ,GPIO.LOW)

47 GPIO.output(23 ,GPIO.LOW)

48 time.sleep(1)

49

50 if uc>dort and fark3>0.01:

51 GPIO.output(24 ,GPIO.HIGH)

52 GPIO.output(8,GPIO.LOW)

53 time.sleep(1)

54 elif dort>uc and fark4>0.01:

55 GPIO.output(8,GPIO.HIGH)

25

56 GPIO.output(24 ,GPIO.LOW)

57 time.sleep(1)

58 else :

59 GPIO.output(24 ,GPIO.LOW)

60 GPIO.output(8,GPIO.LOW)

61 time.sleep(1)

4.3.2 Arduino Part

1 #inc lude <Servo . h>
2

3 Servo servo1 ;
4 Servo servo2 ;
5

6 i n t i n r a sp1 =3;
7 i n t i n r a sp2 =4;
8 i n t i n r a sp3 =5;
9 i n t i n r a sp4 =6;

10

11 i n t read1=0;
12 i n t read2=0;
13 i n t read3=0;
14 i n t read4=0;
15

16 void setup ()
17 {
18 servo1 . attach (9) ;
19 servo1 . wr i teMicroseconds (1475) ;
20 servo2 . attach (10) ;
21 servo2 . wr i teMicroseconds (1475) ;
22

23 pinMode (in rasp1 , INPUT) ;
24 pinMode (in rasp2 , INPUT) ;
25 pinMode (in rasp3 , INPUT) ;
26 pinMode (in rasp4 , INPUT) ;
27 }
28 void loop () {
29 read1 =d ig i ta lRead (i n r a sp1) ;
30 read2 =d ig i ta lRead (i n r a sp2) ;
31 read3 =d ig i ta lRead (i n r a sp3) ;
32 read4 =d ig i ta lRead (i n r a sp4) ;
33

34 i f (read1 == HIGH)
35 {

26

36 servo1 . wr i teMicroseconds (1515) ;
37 delay (42) ;
38 servo1 . wr i teMicroseconds (1475) ;
39 delay (200) ;
40 }
41 e l s e i f (read2 == HIGH)
42 {
43 servo1 . wr i teMicroseconds (1425) ;
44 delay (24) ;
45 servo1 . wr i teMicroseconds (1475) ;
46 delay (100) ;
47 }
48 e l s e
49 {
50 delay (24) ;
51 servo1 . wr i teMicroseconds (1475) ;
52 delay (24) ;
53 }
54 i f (read3 == HIGH)
55 {
56 servo2 . wr i teMicroseconds (1515) ;
57 delay (42) ;
58 servo2 . wr i teMicroseconds (1475) ;
59 delay (100) ;
60 }
61 e l s e i f (read4 == HIGH)
62 {
63 servo2 . wr i teMicroseconds (1425) ;
64 delay (24) ;
65 servo2 . wr i teMicroseconds (1475) ;
66 delay (100) ;
67 }
68 e l s e
69 {
70 delay (24) ;
71 servo2 . wr i teMicroseconds (1475) ;
72 delay (24) ;
73 }
74 }

27

4.4 Implementation

4.4.1 PCB Drawing & 3D Drawings

4.4.1.1 PCB Drawing

4.4.1.2 3D Drawings

4.4.2 Construction of the Body

4.4.2.1 Top Layer

Figure 10: Top Layer

28

4.4.2.2 Main Body

Figure 11: Body

4.4.2.3 Solar Panel

..

..

..

..

..

29

4.4.2.4 Final Body

Figure 12: Final Body

4.5 Tests

4.5.1 System Requirement Tests

Figure 13: Body

30

4.5.2 Subsystem Requirement Tests

Figure 14: Body

4.5.3 Component Requirement Tests

Figure 15: Body

5 After Project

5.1 Training on MATLAB

After finishing the project earlier than expected, I was asked to study
for educational purposes. Firstly, PCB designing and Solidworks modelling
were my priorities since I was not able to do both during the project. Due to
limited time, I did not choose either. Since I know the basics, I have chosen
Matlab to study on it.

5.1.1 Coursera

For that purpose, I have enrolled a course on Coursera. Coursera is.... ...
...
...

31

5.1.2 Outline of the Course

In the first two weeks of the course program, as can be seen from figure
XX, Matlab environment and basic operators were introduced. Since I know
them already, I have watched the video lectures in a few hours. After that,

Figure 16: The Syllabus of Matlab Course for First 3 Weeks

Figure 17: The Syllabus of Matlab Course for 4-5-6 Weeks

32

Figure 18: The Syllabus of Matlab Course for Last 2 Weeks

5.1.2.1 Simple Sorting Code

1 f unc t i on [a b c] = so r t 3 (A)
2 a1 = A(1)
3 a2 = A(2)
4 a3 = A(3)
5

6 i f a1 <= a2
7 i f a2 <= a3
8 a = a1
9 b = a2

10 c = a3
11 e l s e
12 e = a3
13 a3 = a2
14 a2 = e
15

16 i f a1 <= a2
17 a = a1
18 b = a2

33

19 c = a3
20 e l s e
21 w = a2
22 a2 = a1
23 a1 = w
24 a = a1
25 b = a2
26 c = a3
27 end
28 end
29 e l s e
30 w = a2
31 a2 = a1
32 a1 = w
33 i f a2 >= a3
34 e = a3
35 a3 = a2
36 a2 = e
37 i f a1 <= a2
38 a = a1
39 b = a2
40 c = a3
41 e l s e
42 w = a2
43 a2 = a1
44 a1 = w
45 a = a1
46 b = a2
47 c = a3
48 end
49 e l s e
50 a = a1
51 b = a2
52 c = a3
53 end
54 end
55 end
56 }

34

5.2 Training on Microsoft Sharepoint

5.2.1 Microsoft Sharepoint

SharePoint is a web-based, collaborative platform that integrates with
Microsoft Office. Launched in 2001, SharePoint is primarily sold as a docu-
ment management and storage system, but the product is highly configurable
and usage varies substantially between organizations. Microsoft states that
SharePoint has 190 million users across 200,000 customer organizations.

6 Conclusion

For the project, we were expected to built a solar panel system that can
follow the sun light to maxinize its efficiency. As planning the project, we
used V-model and Agile methodology. As mentioned earlier, using V-model
required using another program. We have used Airtable for tracking system
requirements, subsystem requirements, tests and so on. The Interface of
Airtable & System Requirements can be seen at figure X.

7 References

https://bitbucket.org/temurtas/pi/
https://bitbucket.org/temurtas/staj matlab
https://bitbucket.org/temurtas/ee300 report
https://pomotodo.com/app/

35

